uni
Il sistema LKKT (Lagrange-Kurush-Kuhn-Tucker) è un sistema composto dalla funzione Lagrangiana e da altri vincoli basati sulla regione ammissibile (Regione Ammissibile della PNL), le cui soluzioni sono i punti stazionari e quindi contengono massimi e minimi del problema.

Tutte le soluzioni che risolvono il sistema sono punti stazionari_.

Classificazione dei Punti Stazionari

Una può essere o .

  • se discordi
  • se
  • se
    Se non esiste una soluzione che soddisfa il sistema allora massimo e minimo non esistono ().
    Se il poliedro è limitato, una soluzione esiste per il Teorema di Weierstrass.
    In un punto interno al dominio, le sono e le non esistono, il sistema si riduce quindi a .